The primary purpose of this chapter is to review selected concepts pertaining to the treatment of sports injuries. The evaluation and treatment of some common injuries will also be presented. Overuse injuries will be discussed in a separate chapter in this textbook. The reader should understand that the area of sports medicine is broad; therefore, for those interested in treating sports injuries, additional reading of current textbooks and journals is essential. In addition, clinical experience gained through preparticipation physical examinations, sports clinics, and on-field coverage is invaluable to anyone who desires to care for injured athletes.
BASIC PRINCIPLES OF NONOPERATIVE FUNCTIONAL REHABILITATION
Several basic principals can be applied to almost any acute sports injury. These are outlined in Table 23-1. These rehabilitation phases provide a stepwise approach to treat and assess the progress of an athlete with an acute injury. Immobilization is avoided as much as possible because of its multiple detrimental effects on tissue healing (e.g., scar formation, contracture, and atrophy).
Phase I: Decrease Pain and Control Inflammation
The initial phase of treatment is to control the inflammatory reaction that occurs after an acute injury and its associated pain, which inhibits muscle function. It should be noted that mediators involved in the inflammatory response are also important factors involved in the healing of soft-tissue injuries. Therefore, although the goal is to control the inflammatory response, eliminating it completely would be detrimental to tissue healing. The PRICE (protection, rest, ice, compression, elevation) approach is well known to those who care for athletes.
After an injury, the area is protected either by splinting, bracing, or taping/wrapping. It is very rare that any ligamentous or musculoskeletal injuries would require casting, which is usually avoided. Crutch ambulation (usually weight bearing as tolerated) for lower extremity injuries can be very helpful until a normal, pain-free gait pattern can be reestablished. Bracing should be limited to that which protects the specific area while allowing for full motion at other areas. It is often possible to use the same brace to facilitate early protective motion as well as return to functional activities later in the rehabilitation process (e.g., a double upright hinged knee brace following a medial collateral knee sprain).
Rest should be prescribed carefully, as it is important that the athlete does not become deconditioned during the rehabilitation of an injury. Fatigue results in a decrease in neuromuscular functioning and joint control, thereby placing greater dependency on the static stabilizers of joints (i.e., the ligaments), placing them at greater jeopardy for injury. Therefore, the proper term is relative rest, which means that while the affected area is rested, the remainder of the body is exercised. In particular, cardiovascular conditioning must be maintained. This can be done by alternative exercises that allow for protection of the injured area while stressing the cardiovascular system at the same intensity, duration, and frequency as the athlete had previously trained. For example, a running athlete who suffers a lower extremity injury that must be unloaded can use deep-water vest running at the same intensity level as before the injury. This has allowed athletes to maintain their cardiovascular fitness level while their injuries heal, allowing for safe return to play at close to the preinjury level and possibly prevention of additional injuries.
Ice controls the initial inflammatory response and facilitates pain control immediately following an injury. The affected areas should be generally iced 20 minutes four to five times a day, or more often if possible. Ice is used for its properties of vasoconstriction, which limits the edema as well the release of vasoactive and pain factors, such as bradykinins and leukotrienes. Ice also can decrease conduction along pain fibers and act as a counterirritant to assist in pain control and to reduce muscle spasm. There are various methods of icing that include ice pack, ice massage, ice immersion, and devices that combine both ice and compression.
Compression is also used in an effort to limit the edema in the injured area. Ace wrapping is often used but can be problematic because of the difficulties in getting uniform or gradient (from distal to proximal) compression. A compressive stockinette (e.g., Tubigrip) can be very helpful in this regard. A sleeve can be cut to whatever size is necessary and simply applied. For additional compression, it can be folded over onto itself. Care must be taken to avoid excessive pressure over bony protuberances or superficial nerves. Compressive braces can also be effective (e.g., air splints for ankle sprains). Finally, devices that combine icing with compression have been found to be very useful and effective in the postinjury as well as postoperative rehabilitation of athletic injuries. They can be used not only by therapist and athletic trainers but also at home by motivated athletes.
Elevation is yet another means to control postinjury swelling. The injured limb should be elevated above the level of the heart to optimally assist with venous and lymphatic drainage and therefore control edema. Keeping the lower extremities out of a dependent position is helpful as well in limiting the pooling of inflammatory and posttraumatic products.
Additionally, nonsteroidal antiinflammatory drugs (NSAIDs) for a short period of time, if not contraindicated, and electrical stimulation can assist with both inflammation and pain control. Whether they offer clear advantages over using just the above program is a matter of debate, but if available and not contraindicated, appear reasonable.
Phase II: Restore Normal/Symmetric Range of Motion
Pain and swelling can inhibit motion or produce altered motor patterns that, if established, often require retraining to restore proper motor control. An example would be an athlete with an antalgic gait following a knee or ankle injury. This movement pattern must be discouraged while the area is gradually mobilized. Immobility will result in scar and contracture and therefore is not recommended. Range of motion (ROM) allows for controlled stress to a joint, which will stimulate proper collagen deposition. Motion provides sensory input to the central nervous system, which stimulates the proprioceptive system as well modulates pain via the Gate theory. In the early phase, pain-free movement of a joint and stretching that prevents contractures is encouraged as the motion that results in stress on the injured area is avoided. As the pain and inflammation subside, more aggressive stretching and mobilization continues until symmetric (to the unaffected limb) motion is achieved with normal movement patterns.
Phase III: Restore Normal/Symmetric Strength
Strengthening a painful, inflamed limb that lacks normal ROM can result in further problems that can delay recovery from injury. Therefore, a stepwise approach toward strengthening must be used. In the early postinjury phases, pain-free isometric contractions are encouraged in an effort to retard muscular atrophy. They should be performed several times throughout the day. A simple method can be to recommend 10-second contractions, with 10 repetitions, 10 times a day. These isometric contractions may need to be performed through multiple angles as the strengthening is specific to the manner and position that it is trained. As the injured area recovers and ROM is restored, isotonic strengthening can begin if possible. Currently, there is no significant role for isokinetic strengthening because of poor functional carryover. To that end, closed-kinetic chain exercise should begin as soon as possible and progressed as able. Resistance training can be in the form of exercising against gravity, free weights machines, and resistance tubing. The strengthening should be as functional as possible, attempting to match the demands of the sport. Resistance tubing strengthening is attractive because of its ease and simplicity; however, the greatest tension with resistance occurs at the end ROM, where the muscle is usually weakest and the joint is most vulnerable. Therefore, this should be reserved for later stages of the strengthening program. In addition, the use of plyometric exercise should be included as the athlete is preparing to return to sport, because such training may ready the athlete for explosive bursts that are often a necessary part of many high demand sports.
Phase IV: Neuromuscular Control (Proprioceptive) Retraining
In order to dynamically control a joint during sport activity, there needs to be not only full ROM and normal strength, but also adequate dynamic motor control. Specifically, the injured joint needs to be stabilized by synchronous activation of appropriate muscle groups so that the larger, more powerful muscles may safely produce the necessary force required in sports activity. Many injuries can result in proprioceptive loss that may predispose an athlete to repeat injury. As in other areas addressed in the rehabilitation process, the proprioceptive system needs to be progressively challenged in order for progress to be made. Simple proprioceptive training can include seated exercises with a wobble board for lower extremity injuries or loading exercises of the arm either on a table or wall. As the athlete recovers, and assuming that there is near full ROM and strength, the proprioceptive system is progressively challenged (e.g., balancing on a single leg while catching and throwing, balancing with eyes closed). Proprioceptive training requires a great deal of one-on-one work with a therapist or trainer and often creativity in developing ways to challenge the proprioceptive system that corresponds to the athlete’s sport (8).
Phase V: Return to Sport Activities
As the athlete completes these phases, then the therapist or trainer must begin the transition to return to sport. This occurs as the athlete successfully meets the challenges of the previous phases. The athlete then is put through activities that replicate the demands of the sport. For example, a basketball player will be given various drills that include running, cutting, and jumping (and landing) using optimal biomechanics. Once the athlete demonstrates that he or she can successfully negotiate the various drills and challenges that will occur in the sport in a controlled situation, then it will be clear to everyone on the team (including the athlete) that he or she can safely return to their sport.Copyright: Copyright©2005 Lippincott Williams & Wilkins – Physical Medicine & Rehabilitation: Principles and Practice – Joel A. Delisa